495 research outputs found

    Covert Voice over Internet Protocol communications based on spatial model

    Get PDF
    This paper presents a new spatial steganography model for covert communications over Voice over Internet Protocol (VoIP), providing a solution to the issue of increasing the capacity of covert VoIP channels without compromising the imperceptibility of the channels. Drawing from Orthogonal Modulation Theory in communications, the model introduced two concepts, orthogonal data hiding features and data hiding vectors, to covert VoIP communications. By taking into account the variation characteristics of VoIP audio streams in the time domain, a hiding vector negotiation mechanism was suggested to achieve dynamic self-adaptive ste-ganography in media streams. Experimental results on VoIP steganography show that the pro-posed steganographic method effectively depicted the spatial and temporal characteristics of VoIP audio streams, and enhanced robustness against detection of steganalysis tools, thereby improving the security of covert VoIP communications

    Detection of covert Voice over Internet Protocol communications using sliding window-based steganalysis

    Get PDF
    The authors describe a reliable and accurate steganalysis method for detecting covert voice-over Internet protocol (VoIP) communication channels. The proposed method utilises a unique sliding window mechanism and an improved regular singular (RS) algorithm for VoIP steganalysis, which detects the presence of least significant bit embedded VoIP streams. With this mechanism, the detection window moves forward one packet or several packets each time to screen VoIP streams. The optimum detection threshold for the proposed detection metric is computed by modelling the distributions of the new metric for stego and cover VoIP streams. Experimental analysis reveals that the proposed method improves the detection time significantly, utilising less memory resources for VoIP steganalysis, thereby enabling real-time detection of stego VoIP streams. The proposed method also provides a significant improvement on precision in detecting multiple covert VoIP channels when compared to the conventional RS method

    Steganography in inactive frames of VoIP streams encoded by source codec

    Get PDF
    This paper describes a novel high capacity steganography algorithm for embedding data in the inactive frames of low bit rate audio streams encoded by G.723.1 source codec, which is used extensively in Voice over Internet Protocol (VoIP). This study reveals that, contrary to existing thoughts, the inactive frames of VoIP streams are more suitable for data embedding than the active frames of the streams, that is, steganography in the inactive audio frames attains a larger data embedding capacity than that in the active audio frames under the same imperceptibility. By analysing the concealment of steganography in the inactive frames of low bit rate audio streams encoded by G.723.1 codec with 6.3kbps, the authors propose a new algorithm for steganography in different speech parameters of the inactive frames. Performance evaluation shows embedding data in various speech parameters led to different levels of concealment. An improved voice activity detection algorithm is suggested for detecting inactive audio frames taking into packet loss account. Experimental results show our proposed steganography algorithm not only achieved perfect imperceptibility but also gained a high data embedding rate up to 101 bits/frame, indicating that the data embedding capacity of the proposed algorithm is very much larger than those of previously suggested algorithms
    • …
    corecore